Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Soil microbiota influences clubroot disease by modulating Plasmodiophora brassicae and Brassica napus transcriptomes.

Identifieur interne : 000048 ( Main/Exploration ); précédent : 000047; suivant : 000049

Soil microbiota influences clubroot disease by modulating Plasmodiophora brassicae and Brassica napus transcriptomes.

Auteurs : Stéphanie Daval [France] ; Kévin Gazengel [France] ; Arnaud Belcour [France] ; Juliette Linglin [France] ; Anne-Yvonne Guillerm-Erckelboudt [France] ; Alain Sarniguet [France] ; Maria J. Manzanares-Dauleux [France] ; Lionel Lebreton [France] ; Christophe Mougel [France]

Source :

RBID : pubmed:32686326

Abstract

The contribution of surrounding plant microbiota to disease development has led to the 'pathobiome' concept, which represents the interaction between the pathogen, the host plant and the associated biotic microbial community, resulting or not in plant disease. The aim herein is to understand how the soil microbial environment may influence the functions of a pathogen and its pathogenesis, and the molecular response of the plant to the infection, with a dual-RNAseq transcriptomics approach. We address this question using Brassica napus and Plasmodiophora brassicae, the pathogen responsible for clubroot. A time-course experiment was conducted to study interactions between P. brassicae, two B. napus genotypes and three soils harbouring high, medium or low microbiota diversities and levels of richness. The soil microbial diversity levels had an impact on disease development (symptom levels and pathogen quantity). The P. brassicae and B. napus transcriptional patterns were modulated by these microbial diversities, these modulations being dependent on the host genotype plant and the kinetic time. The functional analysis of gene expressions allowed the identification of pathogen and plant host functions potentially involved in the change of plant disease level, such as pathogenicity-related genes (NUDIX effector) in P. brassicae and plant defence-related genes (glucosinolate metabolism) in B. napus.

DOI: 10.1111/1751-7915.13634
PubMed: 32686326
PubMed Central: PMC7415369


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Soil microbiota influences clubroot disease by modulating Plasmodiophora brassicae and Brassica napus transcriptomes.</title>
<author>
<name sortKey="Daval, Stephanie" sort="Daval, Stephanie" uniqKey="Daval S" first="Stéphanie" last="Daval">Stéphanie Daval</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gazengel, Kevin" sort="Gazengel, Kevin" uniqKey="Gazengel K" first="Kévin" last="Gazengel">Kévin Gazengel</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Belcour, Arnaud" sort="Belcour, Arnaud" uniqKey="Belcour A" first="Arnaud" last="Belcour">Arnaud Belcour</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRIA, Université Rennes, CNRS, IRISA, Rennes, F-35000, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRIA, Université Rennes, CNRS, IRISA, Rennes, F-35000</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Linglin, Juliette" sort="Linglin, Juliette" uniqKey="Linglin J" first="Juliette" last="Linglin">Juliette Linglin</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Ploudaniel, F-29260, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Ploudaniel, F-29260</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guillerm Erckelboudt, Anne Yvonne" sort="Guillerm Erckelboudt, Anne Yvonne" uniqKey="Guillerm Erckelboudt A" first="Anne-Yvonne" last="Guillerm-Erckelboudt">Anne-Yvonne Guillerm-Erckelboudt</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sarniguet, Alain" sort="Sarniguet, Alain" uniqKey="Sarniguet A" first="Alain" last="Sarniguet">Alain Sarniguet</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université d'Angers, IRHS, Beaucouzé, F-49071, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université d'Angers, IRHS, Beaucouzé, F-49071</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université d'Angers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Manzanares Dauleux, Maria J" sort="Manzanares Dauleux, Maria J" uniqKey="Manzanares Dauleux M" first="Maria J" last="Manzanares-Dauleux">Maria J. Manzanares-Dauleux</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lebreton, Lionel" sort="Lebreton, Lionel" uniqKey="Lebreton L" first="Lionel" last="Lebreton">Lionel Lebreton</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mougel, Christophe" sort="Mougel, Christophe" uniqKey="Mougel C" first="Christophe" last="Mougel">Christophe Mougel</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32686326</idno>
<idno type="pmid">32686326</idno>
<idno type="doi">10.1111/1751-7915.13634</idno>
<idno type="pmc">PMC7415369</idno>
<idno type="wicri:Area/Main/Corpus">000182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000182</idno>
<idno type="wicri:Area/Main/Curation">000182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000182</idno>
<idno type="wicri:Area/Main/Exploration">000182</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Soil microbiota influences clubroot disease by modulating Plasmodiophora brassicae and Brassica napus transcriptomes.</title>
<author>
<name sortKey="Daval, Stephanie" sort="Daval, Stephanie" uniqKey="Daval S" first="Stéphanie" last="Daval">Stéphanie Daval</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gazengel, Kevin" sort="Gazengel, Kevin" uniqKey="Gazengel K" first="Kévin" last="Gazengel">Kévin Gazengel</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Belcour, Arnaud" sort="Belcour, Arnaud" uniqKey="Belcour A" first="Arnaud" last="Belcour">Arnaud Belcour</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRIA, Université Rennes, CNRS, IRISA, Rennes, F-35000, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRIA, Université Rennes, CNRS, IRISA, Rennes, F-35000</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Linglin, Juliette" sort="Linglin, Juliette" uniqKey="Linglin J" first="Juliette" last="Linglin">Juliette Linglin</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Ploudaniel, F-29260, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Ploudaniel, F-29260</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guillerm Erckelboudt, Anne Yvonne" sort="Guillerm Erckelboudt, Anne Yvonne" uniqKey="Guillerm Erckelboudt A" first="Anne-Yvonne" last="Guillerm-Erckelboudt">Anne-Yvonne Guillerm-Erckelboudt</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sarniguet, Alain" sort="Sarniguet, Alain" uniqKey="Sarniguet A" first="Alain" last="Sarniguet">Alain Sarniguet</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université d'Angers, IRHS, Beaucouzé, F-49071, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université d'Angers, IRHS, Beaucouzé, F-49071</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université d'Angers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Manzanares Dauleux, Maria J" sort="Manzanares Dauleux, Maria J" uniqKey="Manzanares Dauleux M" first="Maria J" last="Manzanares-Dauleux">Maria J. Manzanares-Dauleux</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lebreton, Lionel" sort="Lebreton, Lionel" uniqKey="Lebreton L" first="Lionel" last="Lebreton">Lionel Lebreton</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mougel, Christophe" sort="Mougel, Christophe" uniqKey="Mougel C" first="Christophe" last="Mougel">Christophe Mougel</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbial biotechnology</title>
<idno type="eISSN">1751-7915</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The contribution of surrounding plant microbiota to disease development has led to the 'pathobiome' concept, which represents the interaction between the pathogen, the host plant and the associated biotic microbial community, resulting or not in plant disease. The aim herein is to understand how the soil microbial environment may influence the functions of a pathogen and its pathogenesis, and the molecular response of the plant to the infection, with a dual-RNAseq transcriptomics approach. We address this question using Brassica napus and Plasmodiophora brassicae, the pathogen responsible for clubroot. A time-course experiment was conducted to study interactions between P. brassicae, two B. napus genotypes and three soils harbouring high, medium or low microbiota diversities and levels of richness. The soil microbial diversity levels had an impact on disease development (symptom levels and pathogen quantity). The P. brassicae and B. napus transcriptional patterns were modulated by these microbial diversities, these modulations being dependent on the host genotype plant and the kinetic time. The functional analysis of gene expressions allowed the identification of pathogen and plant host functions potentially involved in the change of plant disease level, such as pathogenicity-related genes (NUDIX effector) in P. brassicae and plant defence-related genes (glucosinolate metabolism) in B. napus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32686326</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1751-7915</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Microbial biotechnology</Title>
<ISOAbbreviation>Microb Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Soil microbiota influences clubroot disease by modulating Plasmodiophora brassicae and Brassica napus transcriptomes.</ArticleTitle>
<Pagination>
<MedlinePgn>1648-1672</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1751-7915.13634</ELocationID>
<Abstract>
<AbstractText>The contribution of surrounding plant microbiota to disease development has led to the 'pathobiome' concept, which represents the interaction between the pathogen, the host plant and the associated biotic microbial community, resulting or not in plant disease. The aim herein is to understand how the soil microbial environment may influence the functions of a pathogen and its pathogenesis, and the molecular response of the plant to the infection, with a dual-RNAseq transcriptomics approach. We address this question using Brassica napus and Plasmodiophora brassicae, the pathogen responsible for clubroot. A time-course experiment was conducted to study interactions between P. brassicae, two B. napus genotypes and three soils harbouring high, medium or low microbiota diversities and levels of richness. The soil microbial diversity levels had an impact on disease development (symptom levels and pathogen quantity). The P. brassicae and B. napus transcriptional patterns were modulated by these microbial diversities, these modulations being dependent on the host genotype plant and the kinetic time. The functional analysis of gene expressions allowed the identification of pathogen and plant host functions potentially involved in the change of plant disease level, such as pathogenicity-related genes (NUDIX effector) in P. brassicae and plant defence-related genes (glucosinolate metabolism) in B. napus.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Daval</LastName>
<ForeName>Stéphanie</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-8848-4190</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gazengel</LastName>
<ForeName>Kévin</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0001-9054-2281</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Belcour</LastName>
<ForeName>Arnaud</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0003-1170-0785</Identifier>
<AffiliationInfo>
<Affiliation>INRIA, Université Rennes, CNRS, IRISA, Rennes, F-35000, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Linglin</LastName>
<ForeName>Juliette</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Ploudaniel, F-29260, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guillerm-Erckelboudt</LastName>
<ForeName>Anne-Yvonne</ForeName>
<Initials>AY</Initials>
<AffiliationInfo>
<Affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sarniguet</LastName>
<ForeName>Alain</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0001-6232-0200</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Agrocampus Ouest, Université d'Angers, IRHS, Beaucouzé, F-49071, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Manzanares-Dauleux</LastName>
<ForeName>Maria J</ForeName>
<Initials>MJ</Initials>
<Identifier Source="ORCID">0000-0002-6452-0393</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lebreton</LastName>
<ForeName>Lionel</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0003-1759-5269</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mougel</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0001-8675-3115</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, F-35650, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Biotechnol</MedlineTA>
<NlmUniqueID>101316335</NlmUniqueID>
<ISSNLinking>1751-7915</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32686326</ArticleId>
<ArticleId IdType="doi">10.1111/1751-7915.13634</ArticleId>
<ArticleId IdType="pmc">PMC7415369</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Abramyan, J., and Stajich, J.E. (2012) Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis. MBio 3: e00150-00112.</Citation>
</Reference>
<Reference>
<Citation>Agarwal, A., Kaul, V., Faggian, R., Rookes, J.E., Ludwig-Müller, J., and Cahill, D.M. (2011) Analysis of global host gene expression during the primary phase of the Arabidopsis thaliana-Plasmodiophora brassicae interaction. Funct Plant Biol 38: 462.</Citation>
</Reference>
<Reference>
<Citation>Aigu, Y., Laperche, A., Mendes, J., Lariagon, C., Guichard, S., Gravot, A., and Manzanares-Dauleux, M.J. (2018) Nitrogen supply exerts a major/minor switch between two QTLs controlling Plasmodiophora brassicae spore content in rapeseed. Plant Pathol 67: 1574-1581.</Citation>
</Reference>
<Reference>
<Citation>Akamatsu, T., Hanzawa, Y., Ohtake, Y., Takahashi, T., Nishitani, K., and Komeda, Y. (1999) Expression of endoxyloglucan transferase genes in acaulis mutants of Arabidopsis. Plant Physiol 121: 715-721.</Citation>
</Reference>
<Reference>
<Citation>Badri, D.V., Zolla, G., Bakker, M.G., Manter, D.K., and Vivanco, J.M. (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198: 264-273.</Citation>
</Reference>
<Reference>
<Citation>Bakker, P., Pieterse, C.M.J., de Jonge, R., and Berendsen, R.L. (2018) The soil-borne legacy. Cell 172: 1178-1180.</Citation>
</Reference>
<Reference>
<Citation>Barret, M., Guimbaud, J.F., Darrasse, A., and Jacques, M.A. (2016) Plant microbiota affects seed transmission of phytopathogenic microorganisms. Mol Plant Pathol 17: 791-795.</Citation>
</Reference>
<Reference>
<Citation>Bates, D.M., Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67: 1-48.</Citation>
</Reference>
<Reference>
<Citation>Bauer, M.A., Kainz, K., Carmona-Gutierrez, D., and Madeo, F. (2018) Microbial wars: competition in ecological niches and within the microbiome. Microbial Cell 5: 215-219.</Citation>
</Reference>
<Reference>
<Citation>Benjamini, Y. (2010) Discovering the false discovery rate. J R Stat Soc Ser B Stat Methodol 72: 405-416.</Citation>
</Reference>
<Reference>
<Citation>Berendsen, R.L., Pieterse, C.M., and Bakker, P.A. (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17: 478-486.</Citation>
</Reference>
<Reference>
<Citation>Bi, K., He, Z., Gao, Z., Zhao, Y., Fu, Y., Cheng, J., et al. (2016) Integrated omics study of lipid droplets from Plasmodiophora brassicae. Sci Rep 6: 36965.</Citation>
</Reference>
<Reference>
<Citation>Bi, K., Chen, T., He, Z., Gao, Z., Zhao, Y., Liu, H., et al. (2019) Comparative genomics reveals the unique evolutionary status of Plasmodiophora brassicae and the essential role of GPCR signaling pathways. Phytopathology Research 1: 12.</Citation>
</Reference>
<Reference>
<Citation>Bischoff, V., Nita, S., Neumetzler, L., Schindelasch, D., Urbain, A., Eshed, R., et al. (2010) TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol 153: 590-602.</Citation>
</Reference>
<Reference>
<Citation>Blaser, M.J. (2014) The microbiome revolution. J Clin Invest 124: 4162-4165.</Citation>
</Reference>
<Reference>
<Citation>Brader, G., Compant, S., Vescio, K., Mitter, B., Trognitz, F., Ma, L.J., and Sessitsch, A. (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55: 61-83.</Citation>
</Reference>
<Reference>
<Citation>Bulgarelli, D., Rott, M., Schlaeppi, K., Loren, Ver, van Themaat, E., Ahmadinejad, N., et al. (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488: 91-95.</Citation>
</Reference>
<Reference>
<Citation>Calmes, B., Morel-Rouhier, M., Bataille-Simoneau, N., Gelhaye, E., Guillemette, T., and Simoneau, P. (2015) Characterization of glutathione transferases involved in the pathogenicity of Alternaria brassicicola. BMC Microbiol 15: 123.</Citation>
</Reference>
<Reference>
<Citation>Cha, J.Y., Han, S., Hong, H.J., Cho, H., Kim, D., Kwon, Y., et al. (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J 10: 119-129.</Citation>
</Reference>
<Reference>
<Citation>Chalhoub, B., Denoeud, F., Liu, S.Y., Parkin, I.A.P., Tang, H.B., Wang, X.Y., et al. (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345: 950-953.</Citation>
</Reference>
<Reference>
<Citation>Chaparro, J.M., Badri, D.V., and Vivanco, J.M. (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8: 790-803.</Citation>
</Reference>
<Reference>
<Citation>Chapelle, E., Mendes, R., Bakker, P.A., and Raaijmakers, J.M. (2016) Fungal invasion of the rhizosphere microbiome. ISME J 10: 265-268.</Citation>
</Reference>
<Reference>
<Citation>Cheah, L.H., Veerakone, S., and Kent, G. (2000) Biological control of clubroot on cauliflower with Trichoderma and Streptomyces spp. N Z Plant Prot 53: 18-21.</Citation>
</Reference>
<Reference>
<Citation>Cheah, L.H., Kent, G., Gowers, S., New Zealand Plant Protection Society, I.N.C., and New Zealand Plant Protection Society, I.N.C. (2001) Brassica crops and a Streptomyces sp as potential biocontrol for clubroot of Brassicas. In New Zealand Plant Protection, vol. 54. Rotorua: New Zealand Plant Protection Society, pp. 80-83.</Citation>
</Reference>
<Reference>
<Citation>Chen, J., Pang, W., Chen, B., Zhang, C., and Piao, Z. (2015) Transcriptome Analysis of Brassica rapa Near-Isogenic Lines Carrying Clubroot-Resistant and -Susceptible Alleles in Response to Plasmodiophora brassicae during Early Infection. Front Plant Sci 6: 1183.</Citation>
</Reference>
<Reference>
<Citation>Cordovez, V., Carrion, V.J., Etalo, D.W., Mumm, R., Zhu, H., van Wezel, G.P., and Raaijmakers, J.M. (2015) Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 6: 1081.</Citation>
</Reference>
<Reference>
<Citation>Daval, S., Belcour, A., Gazengel, K., Legrand, L., Gouzy, J., Cottret, L., et al. (2019) Computational analysis of the Plasmodiophora brassicae genome: mitochondrial sequence description and metabolic pathway database design. Genomics 111: 1629-1640.</Citation>
</Reference>
<Reference>
<Citation>Devos, S., Laukens, K., Deckers, P., Van Der Straeten, D., Beeckman, T., Inze, D., et al. (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant Microbe Interact 19: 1431-1443.</Citation>
</Reference>
<Reference>
<Citation>Dixon, G.R. (2009) The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. J Plant Growth Regul 28: 194-202.</Citation>
</Reference>
<Reference>
<Citation>Dong, S., and Wang, Y. (2016) Nudix effectors: a common weapon in the arsenal of plant pathogens. PLoS Pathog 12: e1005704.</Citation>
</Reference>
<Reference>
<Citation>Duplan, V., and Rivas, S. (2014) E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. Front Plant Sci 5: 42.</Citation>
</Reference>
<Reference>
<Citation>Erlacher, A., Cardinale, M., Grosch, R., Grube, M., and Berg, G. (2014) The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 5: 175.</Citation>
</Reference>
<Reference>
<Citation>Fahling, M., Graf, H., and Siemens, J. (2003) Pathotype separation of Plasmodiophora brassicae by the host plant. J Phytopathol 151: 425-430.</Citation>
</Reference>
<Reference>
<Citation>Gaufichon, L., Rothstein, S.J., and Suzuki, A. (2016) Asparagine metabolic pathways in Arabidopsis. Plant Cell Physiol 57: 675-689.</Citation>
</Reference>
<Reference>
<Citation>Gravot, A., Grillet, L., Wagner, G., Jubault, M., Lariagon, C., Baron, C., et al. (2011) Genetic and physiological analysis of the relationship between partial resistance to clubroot and tolerance to trehalose in Arabidopsis thaliana. New Phytol 191: 1083-1094.</Citation>
</Reference>
<Reference>
<Citation>Gravot, A., Deleu, C., Wagner, G., Lariagon, C., Lugan, R., Todd, C., et al. (2012) Arginase induction represses gall development during clubroot infection in Arabidopsis. Plant Cell Physiol 53: 901-911.</Citation>
</Reference>
<Reference>
<Citation>Guo, S., Li, X., He, P., Ho, H., Wu, Y., and He, Y. (2015) Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. J Ind Microbiol Biotechnol 42: 925-937.</Citation>
</Reference>
<Reference>
<Citation>Hacquard, S., Spaepen, S., Garrido-Oter, R., and Schulze-Lefert, P. (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55: 565-589.</Citation>
</Reference>
<Reference>
<Citation>Hall, A. (1990) The cellular functions of small GTP-binding proteins. Science 249: 635-640.</Citation>
</Reference>
<Reference>
<Citation>Haney, C.H., Samuel, B.S., Bush, J., and Ausubel, F.M. (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1: 15051.</Citation>
</Reference>
<Reference>
<Citation>Hassani, M.A., Duran, P., and Hacquard, S. (2018) Microbial interactions within the plant holobiont. Microbiome 6: 58.</Citation>
</Reference>
<Reference>
<Citation>van der Heijden, M.G., and Hartmann, M. (2016) Networking in the plant microbiome. PLoS Biol 14: e1002378.</Citation>
</Reference>
<Reference>
<Citation>Hervé, M. (2019) RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-73. URL https://CRAN.R-project.org/package=RVAideMemoire.</Citation>
</Reference>
<Reference>
<Citation>Heung, L.J., Luberto, C., and Del Poeta, M. (2006) Role of sphingolipids in microbial pathogenesis. Infect Immun 74: 28-39.</Citation>
</Reference>
<Reference>
<Citation>van den Heuvel, R.H., Curti, B., Vanoni, M.A., and Mattevi, A. (2004) Glutamate synthase: a fascinating pathway from L-glutamine to L-glutamate. Cell Mol Life Sci 61: 669-681.</Citation>
</Reference>
<Reference>
<Citation>Hol, W.H., de Boer, W., de Hollander, M., Kuramae, E.E., Meisner, A., and van der Putten, W.H. (2015) Context dependency and saturating effects of loss of rare soil microbes on plant productivity. Front Plant Sci 6: 485.</Citation>
</Reference>
<Reference>
<Citation>Huang, S., Chen, X., Zhong, X., Li, M., Ao, K., Huang, J., and Li, X. (2016) Plant TRAF proteins regulate NLR immune receptor turnover. Cell Host Microbe 19: 204-215.</Citation>
</Reference>
<Reference>
<Citation>Hwang, S.F., Strelkov, S.E., Feng, J., Gossen, B.D., and Howard, R.J. (2012) Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop. Mol Plant Pathol 13: 105-113.</Citation>
</Reference>
<Reference>
<Citation>Kageyama, K., and Asano, T. (2009) Life cycle of Plasmodiophora brassicae. J Plant Growth Regul 28: 203-211.</Citation>
</Reference>
<Reference>
<Citation>Kielbowicz-Matuk, A. (2012) Involvement of plant C(2)H(2)-type zinc finger transcription factors in stress responses. Plant Sci 185-186: 78-85.</Citation>
</Reference>
<Reference>
<Citation>King, R., Urban, M., Lauder, R.P., Hawkins, N., Evans, M., Plummer, A., et al. (2017) A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces. PLoS Pathog 13: e1006672.</Citation>
</Reference>
<Reference>
<Citation>Kombrink, A., and Thomma, B.P. (2013) LysM effectors: secreted proteins supporting fungal life. PLoS Pathog 9: e1003769.</Citation>
</Reference>
<Reference>
<Citation>Kong, L.A., Yang, J., Li, G.T., Qi, L.L., Zhang, Y.J., Wang, C.F., et al. (2012) Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8: e1002526.</Citation>
</Reference>
<Reference>
<Citation>Lachaise, T., Ourry, M., Lebreton, L., Guillerm-Erckelboudt, A.Y., Linglin, J., Paty, C., et al. (2017) Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape. Insect Sci 24: 1045-1056.</Citation>
</Reference>
<Reference>
<Citation>Lahlali, R., McGregor, L., Song, T., Gossen, B.D., Narisawa, K., and Peng, G. (2014) Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis. PLoS One 9: e94144.</Citation>
</Reference>
<Reference>
<Citation>Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M., et al. (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349: 860-864.</Citation>
</Reference>
<Reference>
<Citation>Lebreton, L., Guillerm-Erckelboudt, A.Y., Gazengel, K., Linglin, J., Ourry, M., Glory, P., et al. (2019) Temporal dynamics of bacterial and fungal communities during the infection of Brassica rapa roots by the protist Plasmodiophora brassicae. PLoS One 14: e0204195.</Citation>
</Reference>
<Reference>
<Citation>Lee, S.O., Choi, G.J., Choi, Y.H., Jang, K.S., Park, D.J., Kim, C.J., and Kim, J.C. (2008) Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18: 1741-1746.</Citation>
</Reference>
<Reference>
<Citation>Lemarie, S., Robert-Seilaniantz, A., Lariagon, C., Lemoine, J., Marnet, N., Jubault, M., et al. (2015) Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant Cell Physiol 56: 2158-2168.</Citation>
</Reference>
<Reference>
<Citation>Lenth, R.V. (2016) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.3. URL https://CRAN.R-project.org/package=emmeans.</Citation>
</Reference>
<Reference>
<Citation>Li, L., Long, Y., Li, H., and Wu, X. (2020) Comparative transcriptome analysis reveals key pathways and hub genes in rapeseed during the early stage of Plasmodiophora brassicae infection. Front Genet 10: 1275.</Citation>
</Reference>
<Reference>
<Citation>Liu, P., and Stajich, J.E. (2015) Characterization of the Carbohydrate Binding Module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis. Fungal Genet Biol 77: 31-39.</Citation>
</Reference>
<Reference>
<Citation>Liu, Z., Zhang, X., Liu, X., Fu, C., Han, X., Yin, Y., and Ma, Z. (2016) The chitin synthase FgChs2 and other FgChss co-regulate vegetative development and virulence in F. graminearum. Sci Rep 6: 34975.</Citation>
</Reference>
<Reference>
<Citation>Ludwig-Müller, J. (2008) Glucosinolates and the clubroot disease: defense compounds or auxin precursors? Phytochem Rev 8: 135-148.</Citation>
</Reference>
<Reference>
<Citation>Ludwig-Muller, J., Julke, S., Geiss, K., Richter, F., Mithofer, A., Sola, I., et al. (2015) A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid. Mol Plant Pathol 16: 349-364.</Citation>
</Reference>
<Reference>
<Citation>Lugtenberg, B.J., Caradus, J.R., and Johnson, L.J. (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92.</Citation>
</Reference>
<Reference>
<Citation>Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., et al. (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86-90.</Citation>
</Reference>
<Reference>
<Citation>Luo, Y., Dong, D., Gou, Z., Wang, X., Jiang, H., Yan, Y., et al. (2017) Isolation and characterization of Zhihengliuella aestuarii B18 suppressing clubroot on Brassica juncea var. tumida Tsen. Eur J Plant Pathol 150: 213-222.</Citation>
</Reference>
<Reference>
<Citation>Mahoney, A.K., Yin, C., and Hulbert, S.H. (2017) Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) Cultivars. Front Plant Sci 8: 132.</Citation>
</Reference>
<Reference>
<Citation>Malinowski, R., Novák, O., Borhan, M.H., Spíchal, L., Strnad, M., and Rolfe, S.A. (2016) The role of cytokinins in clubroot disease. Eur J Plant Pathol 145: 543-557.</Citation>
</Reference>
<Reference>
<Citation>Mallon, C.A., Le Roux, X., van Doorn, G.S., Dini-Andreote, F., Poly, F., and Salles, J.F. (2018) The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader's niche. ISME J 12: 728-741.</Citation>
</Reference>
<Reference>
<Citation>Manzanares-Dauleux, M.J., Divaret, I., Baron, F., and Thomas, G. (2000) Evaluation of French Brassica oleracea landraces for resistance to Plasmodiophora brassicae. Euphytica 113: 211-218.</Citation>
</Reference>
<Reference>
<Citation>Marowa, P., Ding, A., and Kong, Y. (2016) Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35: 949-965.</Citation>
</Reference>
<Reference>
<Citation>Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J.H.M., et al. (2011) Deciphering the Rhizosphere microbiome for disease-suppressive bacteria. Science 332: 1097-1100.</Citation>
</Reference>
<Reference>
<Citation>Mendes, R., Garbeva, P., and Raaijmakers, J.M. (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37: 634-663.</Citation>
</Reference>
<Reference>
<Citation>Monod, M., Capoccia, S., Lechenne, B., Zaugg, C., Holdom, M., and Jousson, O. (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292: 405-419.</Citation>
</Reference>
<Reference>
<Citation>Muller, D.B., Vogel, C., Bai, Y., and Vorholt, J.A. (2016) The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 50: 211-234.</Citation>
</Reference>
<Reference>
<Citation>Muszewska, A., Stepniewska-Dziubinska, M.M., Steczkiewicz, K., Pawlowska, J., Dziedzic, A., and Ginalski, K. (2017) Fungal lifestyle reflected in serine protease repertoire. Sci Rep 7: 9147.</Citation>
</Reference>
<Reference>
<Citation>Nitzsche, R., Gunay-Esiyok, O., Tischer, M., Zagoriy, V., and Gupta, N. (2017) A plant/fungal-type phosphoenolpyruvate carboxykinase located in the parasite mitochondrion ensures glucose-independent survival of Toxoplasma gondii. J Biol Chem 292: 15225-15239.</Citation>
</Reference>
<Reference>
<Citation>Oh, Y., Donofrio, N., Pan, H., Coughlan, S., Brown, D.E., Meng, S., et al. (2008) Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol 9: R85.</Citation>
</Reference>
<Reference>
<Citation>Oksanen, J., Blanchet, G.F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2019) vegan: Community Ecology Package. R package version 2.5-6. URL https://CRAN.R-project.org/package=vegan.</Citation>
</Reference>
<Reference>
<Citation>Ourry, M., Lebreton, L., Chaminade, V., Guillerm-Erckelboudt, A.-Y., Hervé, M., Linglin, J., et al. (2018) Influence of belowground herbivory on the dynamics of root and rhizosphere microbial communities. Front Ecol Evol 6: 91.</Citation>
</Reference>
<Reference>
<Citation>Perez-Lopez, E., Waldner, M., Hossain, M., Kusalik, A.J., Wei, Y., Bonham-Smith, P.C., and Todd, C.D. (2018) Identification of Plasmodiophora brassicae effectors - a challenging goal. Virulence 9: 1344-1353.</Citation>
</Reference>
<Reference>
<Citation>Plassart, P., Terrat, S., Thomson, B., Griffiths, R., Dequiedt, S., Lelievre, M., et al. (2012) Evaluation of the ISO standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure. PLoS One 7: e44279.</Citation>
</Reference>
<Reference>
<Citation>Ploch, S., Rose, L.E., Bass, D., and Bonkowski, M. (2016) High diversity revealed in leaf-associated protists (Rhizaria: Cercozoa) of Brassicaceae. J Eukaryot Microbiol 63: 635-641.</Citation>
</Reference>
<Reference>
<Citation>Podolich, O., Ardanov, P., Zaets, I., Pirttilä, A.M., and Kozyrovska, N. (2014) Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant Soil 388: 367-377.</Citation>
</Reference>
<Reference>
<Citation>Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590-D596.</Citation>
</Reference>
<Reference>
<Citation>Raaijmakers, J.M., Paulitz, T.C., Steinberg, C., Alabouvette, C., and Moënne-Loccoz, Y. (2008) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321: 341-361.</Citation>
</Reference>
<Reference>
<Citation>Rolfe, S.A., Strelkov, S.E., Links, M.G., Clarke, W.E., Robinson, S.J., Djavaheri, M., et al. (2016) The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genom 17: 272.</Citation>
</Reference>
<Reference>
<Citation>Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M.L., et al. (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17: 316-331.</Citation>
</Reference>
<Reference>
<Citation>Santhanam, R., Luu, V.T., Weinhold, A., Goldberg, J., Oh, Y., and Baldwin, I.T. (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA 112: E5013-5020.</Citation>
</Reference>
<Reference>
<Citation>Schaeffer, A., Bronner, R., Benveniste, P., and Schaller, H. (2001) The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J 25: 605-615.</Citation>
</Reference>
<Reference>
<Citation>Schuller, A., Kehr, J., and Ludwig-Muller, J. (2014) Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation. Plant Cell Physiol 55: 392-411.</Citation>
</Reference>
<Reference>
<Citation>Schwelm, A., Dixelius, C., and Ludwig-Müller, J. (2015a) New kid on the block - the clubroot pathogen genome moves the plasmodiophorids into the genomic era. Eur J Plant Pathol 145: 531-542.</Citation>
</Reference>
<Reference>
<Citation>Schwelm, A., Fogelqvist, J., Knaust, A., Julke, S., Lilja, T., Bonilla-Rosso, G., et al. (2015b) The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci Rep 5: 11153.</Citation>
</Reference>
<Reference>
<Citation>Sedbrook, J.C., Carroll, K.L., Hung, K.F., Masson, P.H., and Somerville, C.R. (2002) The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell 14: 1635-1648.</Citation>
</Reference>
<Reference>
<Citation>Shakeel, Q., Lyu, A., Zhang, J., Wu, M., Chen, S., Chen, W., et al. (2016) Optimization of the cultural medium and conditions for production of antifungal substances by Streptomyces platensis 3-10 and evaluation of its efficacy in suppression of clubroot disease ( Plasmodiophora brassicae ) of oilseed rape. Biol Control 101: 59-68.</Citation>
</Reference>
<Reference>
<Citation>Shnaiderman, C., Miyara, I., Kobiler, I., Sherman, A., and Prusky, D. (2013) Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity. Mol Plant Microbe Interact 26: 345-355.</Citation>
</Reference>
<Reference>
<Citation>Showalter, A.M. (2001) (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58(10): 1399-1417.</Citation>
</Reference>
<Reference>
<Citation>Siemens, J., Keller, I., Sarx, J., Kunz, S., Schuller, A., Nagel, W., et al. (2006) Transcriptome analysis of Arabidopsis Clubroots indicate a key role for cytokinins in disease development. Mol Plant-Microbe Interact 19: 480-494.</Citation>
</Reference>
<Reference>
<Citation>Singh, K., Winter, M., Zouhar, M., and Rysanek, P. (2018) Cyclophilins: less studied proteins with critical roles in pathogenesis. Phytopathology 108: 6-14.</Citation>
</Reference>
<Reference>
<Citation>Some, A., Manzanares, M.J., Laurens, F., Baron, F., Thomas, G., and Rouxel, F. (1996) Variation for virulence on Brassica napus L amongst Plasmodiophora brassicae collections from France and derived single-spore isolates. Plant Pathol 45: 432-439.</Citation>
</Reference>
<Reference>
<Citation>Song, J.B., Gao, S., Sun, D., Li, H., Shu, X.X., and Yang, Z.M. (2013) miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biol 13: 210.</Citation>
</Reference>
<Reference>
<Citation>Terrat, S., Christen, R., Dequiedt, S., Lelievre, M., Nowak, V., Regnier, T., et al. (2012) Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microb Biotechnol 5: 135-141.</Citation>
</Reference>
<Reference>
<Citation>Terrat, S., Dequiedt, S., Horrigue, W., Lelievre, M., Cruaud, C., Saby, N.P., et al. (2015) Improving soil bacterial taxa-area relationships assessment using DNA meta-barcoding. Heredity 114: 468-475.</Citation>
</Reference>
<Reference>
<Citation>Tommerup, I.C., and Ingram, D.S. (1971) Life-cycle of Plasmodiophora brassicae woron. in brassica tissue cultures and in intact roots. New Phytol 70: 327-332.</Citation>
</Reference>
<Reference>
<Citation>Turner, T.R., James, E.K., and Poole, P.S. (2013) The plant microbiome. Genome Biol 14: 10.</Citation>
</Reference>
<Reference>
<Citation>Vacher, C., Hampe, A., Porté, A.J., Sauer, U., Compant, S., and Morris, C.E. (2016) The Phyllosphere: microbial jungle at the plant-climate interface. Annu Rev Ecol Evol Syst 47: 1-24.</Citation>
</Reference>
<Reference>
<Citation>Van Lijsebettens, M., and Grasser, K.D. (2014) Transcript elongation factors: shaping transcriptomes after transcript initiation. Trends Plant Sci 19: 717-726.</Citation>
</Reference>
<Reference>
<Citation>Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., and Dufresne, A. (2015) The importance of the microbiome of the plant holobiont. New Phytol 206: 1196-1206.</Citation>
</Reference>
<Reference>
<Citation>Vandepoele, K., Raes, J., De Veylder, L., Rouze, P., Rombauts, S., and Inze, D. (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14: 903-916.</Citation>
</Reference>
<Reference>
<Citation>Vannier, N., Agler, M., and Hacquard, S. (2019) Microbiota-mediated disease resistance in plants. PLoS Pathog 15: e1007740.</Citation>
</Reference>
<Reference>
<Citation>Varanini, Z., Cesco, S., Tomasi, N., Pinton, R., Guzzo, F., Zamboni, A., et al. (2018) Nitrate induction and physiological responses of two maize lines differing in nitrogen use efficiency: effects on N availability, microbial diversity and enzyme activity in the rhizosphere. Plant Soil 422: 331-347.</Citation>
</Reference>
<Reference>
<Citation>Vayssier-Taussat, M., Albina, E., Citti, C., Cosson, J.F., Jacques, M.A., Lebrun, M.H., et al. (2014) Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol 4: 29.</Citation>
</Reference>
<Reference>
<Citation>Vylkova, S. (2017) Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog 13: e1006149.</Citation>
</Reference>
<Reference>
<Citation>Walters, W.A., Jin, Z., Youngblut, N., Wallace, J.G., Sutter, J., Zhang, W., et al. (2018) Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci USA 115: 7368-7373.</Citation>
</Reference>
<Reference>
<Citation>Westermann, A.J., Gorski, S.A., and Vogel, J. (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10: 618-630.</Citation>
</Reference>
<Reference>
<Citation>Wolf, T., Kammer, P., Brunke, S., and Linde, J. (2018) Two's company: studying interspecies relationships with dual RNA-seq. Curr Opin Microbiol 42: 7-12.</Citation>
</Reference>
<Reference>
<Citation>Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., et al. (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23: 980-988.</Citation>
</Reference>
<Reference>
<Citation>Xu, S.J., Hong, S.J., Choi, W., and Kim, B.S. (2014) Antifungal activity of Paenibacillus kribbensis Strain T-9 isolated from soils against several plant pathogenic fungi. Plant Pathol J 30: 102-108.</Citation>
</Reference>
<Reference>
<Citation>Yan, Y., Kuramae, E.E., de Hollander, M., Klinkhamer, P.G., and van Veen, J.A. (2017) Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J 11: 56-66.</Citation>
</Reference>
<Reference>
<Citation>Yao, H., and Wu, F. (2010) Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt. FEMS Microbiol Ecol 72: 456-463.</Citation>
</Reference>
<Reference>
<Citation>Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., and Chory, J. (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120: 249-259.</Citation>
</Reference>
<Reference>
<Citation>Yu, F., Wang, S., Zhang, W., Tang, J., Wang, H., Yu, L., et al. (2019) Genome-wide identification of genes encoding putative secreted E3 ubiquitin ligases and functional characterization of PbRING1 in the biotrophic protist Plasmodiophora brassicae. Curr Genet 65: 1355-1365.</Citation>
</Reference>
<Reference>
<Citation>Yuan, J., Zhao, J., Wen, T., Zhao, M., Li, R., Goossens, P., et al. (2018) Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6: 156.</Citation>
</Reference>
<Reference>
<Citation>Zeng, L.R., Park, C.H., Venu, R.C., Gough, J., and Wang, G.L. (2008) Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol Plant 1: 800-815.</Citation>
</Reference>
<Reference>
<Citation>Zhang, D., Burroughs, A.M., Vidal, N.D., Iyer, L.M., and Aravind, L. (2016) Transposons to toxins: the provenance, architecture and diversification of a widespread class of eukaryotic effectors. Nucleic Acids Res 44: 3513-3533.</Citation>
</Reference>
<Reference>
<Citation>Zhao, Y., Hu, Y., Dai, M., Huang, L., and Zhou, D.X. (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21: 736-748.</Citation>
</Reference>
<Reference>
<Citation>Zhao, J., Wu, Y.-X., Ho, H.-H., Chen, Z.-J., Li, X.-Y., and He, Y.-Q. (2016) PBT1, a novel antimicrobial protein from the biocontrol agent Bacillus subtilis XF-1 against Plasmodiophora brassicae. Eur J Plant Pathol 145: 583-590.</Citation>
</Reference>
<Reference>
<Citation>Zhao, Y., Gao, Z., Tian, B., Bi, K., Chen, T., Liu, H., et al. (2017) Endosphere microbiome comparison between symptomatic and asymptomatic roots of Brassica napus infected with Plasmodiophora brassicae. PLoS One 12: e0185907.</Citation>
</Reference>
<Reference>
<Citation>Zhou, L., Li, M., Yang, J., Wei, L., and Ji, G. (2014) Draft genome sequence of antagonistic agent Lysobacter antibioticus 13-6. Genome Announc 2: e00566-00514.</Citation>
</Reference>
<Reference>
<Citation>Zhu, S., Vivanco, J.M., and Manter, D.K. (2016) Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl Soil Ecol 107: 324-333.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Pays de la Loire</li>
<li>Région Bretagne</li>
</region>
<orgName>
<li>Université d'Angers</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Région Bretagne">
<name sortKey="Daval, Stephanie" sort="Daval, Stephanie" uniqKey="Daval S" first="Stéphanie" last="Daval">Stéphanie Daval</name>
</region>
<name sortKey="Belcour, Arnaud" sort="Belcour, Arnaud" uniqKey="Belcour A" first="Arnaud" last="Belcour">Arnaud Belcour</name>
<name sortKey="Gazengel, Kevin" sort="Gazengel, Kevin" uniqKey="Gazengel K" first="Kévin" last="Gazengel">Kévin Gazengel</name>
<name sortKey="Guillerm Erckelboudt, Anne Yvonne" sort="Guillerm Erckelboudt, Anne Yvonne" uniqKey="Guillerm Erckelboudt A" first="Anne-Yvonne" last="Guillerm-Erckelboudt">Anne-Yvonne Guillerm-Erckelboudt</name>
<name sortKey="Lebreton, Lionel" sort="Lebreton, Lionel" uniqKey="Lebreton L" first="Lionel" last="Lebreton">Lionel Lebreton</name>
<name sortKey="Linglin, Juliette" sort="Linglin, Juliette" uniqKey="Linglin J" first="Juliette" last="Linglin">Juliette Linglin</name>
<name sortKey="Manzanares Dauleux, Maria J" sort="Manzanares Dauleux, Maria J" uniqKey="Manzanares Dauleux M" first="Maria J" last="Manzanares-Dauleux">Maria J. Manzanares-Dauleux</name>
<name sortKey="Mougel, Christophe" sort="Mougel, Christophe" uniqKey="Mougel C" first="Christophe" last="Mougel">Christophe Mougel</name>
<name sortKey="Sarniguet, Alain" sort="Sarniguet, Alain" uniqKey="Sarniguet A" first="Alain" last="Sarniguet">Alain Sarniguet</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000048 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000048 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32686326
   |texte=   Soil microbiota influences clubroot disease by modulating Plasmodiophora brassicae and Brassica napus transcriptomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32686326" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020